Overdose stories that might SURPRISE you...in a bad way!

Debra A. Kent, Pharm.D.
Clinical Supervisor
B.C. Drug and Poison Information Centre, BCCDC
Clinical Professor, Faculty of Pharmaceutical Sciences, UBC
kent@dpic.ca
17 March 2017
Presenter Disclosure

- Debra Kent, presenter
- I have no current or past relationships with commercial entities
- I have received a speaker’s fee from CHSP for this learning activity
Commercial Support Disclosure

- This program has received no financial or in-kind support from any commercial or other organization
Goals & Objectives

- Discuss overdoses that may be associated with surprisingly rapid deterioration in clinical status.

- Discuss current approach to managing these overdoses that may be unexpected and perhaps not anticipated.
Case: Bupropion

- Young adult female brought to ER approximately 3 hours after ingesting 60 tablets of 150 mg bupropion XL.
 - HR 95/min, normotensive
 - ECG: NSR, QRS, QTc normal

- 9 hours post ingestion - ICU
 - Developed multiple seizures
 - Controlled with lorazepam & propofol
 - Intubated, ventilated
 - HR 150/min, BP 150/90 mmHg, pupils 8 mm
Case: Bupropion

- 12 hours post ingestion
 - BP 90/60 mmHg
 - BP began dropping despite norepinephrine, phenylephrine, vasopressin

- Pt developed idioventricular rhythm
 - Followed by pulseless, wide-complex rhythm
 - QRS 0.154 sec (normal < 0.1)
 - Then v. tach and v. fib
 - Received: defibrillations, epi, Mg, sodium bicarbonate boluses over 15 min
 - Circulation sustained for 20 minutes

- PEA with wide-complex recurred
 - Patient couldn’t be resuscitated
 - Pt expired approximately 16 hours post ingestion
Bupropion

Mechanism:
- Structurally similar to amphetamines
- Inhibits dopamine >> norepinephrine
- Sodium channel blockade with large doses

Toxicity
- *Typical:* Sinus tachycardia, hypertension, agitation, tremor, seizures
- *Severe:* Hypotension, QRS prolongation, cardiac arrest
Bupropion

- Toxic dose
 - Adults: seizures common with > 2.5 g; seen with as little as 600 – 1,000 mg
 - > 300 mg in a child
- Onset delayed due to SR, XL formulation
 - Consider activated charcoal several hours post ingestion
- Monitor VS, ECG for 18-24 hrs.
- Aggressive supportive care
 - BDZ ++++, propofol as needed for seizures
 - Sodium bicarbonate for QRS prolongation
 - Vasopressors for hypotension
 - Lipid emulsion for severe cardiac toxicity
Intravenous lipid emulsion (ILE)

- Effective in reversing LAST (local anesthetic systemic toxicity)
- Consider for drug-induced cardiotoxicity not responding to standard resuscitative measures
 - Bupropion
 - TCAs, CCBs, beta blockers
- Proposed mechanism(s) still not clear.
 - Lipid sink
 - Metabolic effect (free fatty acid uptake)
 - Membrane effect (Na, Ca channels)
Intravenous lipid emulsion (ILE)

- **Dose:** (lipidrescue.org)
 - Bolus: 1.5 mL/kg of 20% lipid emulsion over 1 min (~100 mL)
 - Followed by: 0.25-0.5 mL/kg/min (~18-36 mL/min)
 - Continue for 10 minutes after recovery
 - Upper dose limit: 10 mL/kg over first 30 minutes

- **Case reports of ADRs**
 - Pancreatitis
 - Analytical interferences
Pitfalls in Managing Bupropion

- Monitoring for only several hours.
- Forgetting that sedating co-ingestants may wear off as bupropion effects begin.
- Underestimating cardiovascular toxicity of large doses.
- Not realizing how quickly patients can deteriorate from seizures to cardiovascular collapse.
- Failure to aggressively dose sodium bicarbonate.
- Not considering lipid emulsion for asystole.
Case: Colchicine Overdose

- Male in his 20’s had fight with girlfriend and took handful of his colchicine at 02:00 hrs
- Vomited at 07:00 hrs
- Presented to ED 20 hrs post ingestion with gastrointestinal sxs
- Labs (on admission):
 - WBC 36.9, INR 1.7
 - Creatinine 143 µmol/L, Urea 8.1 mmol/L, lactate 3.6 mmol/L
 - CK 408 µmol/L
Case: Course

- **Treatment included:**
 - Ondansetron, activated charcoal, IV fluids
 - Transfer to higher level of care (out of small hospital)

- **Course over next 24 hrs**
 - Increasing trops, SCr, urea, CK, INR, WBC
 - VS stable, intermittent diarrhea & vomiting, decreasing urine output
24 hrs post admission
 ◦ Required intubation/ventilation
 ◦ BP dropped to 60/20 mmHg
 ◦ BP 131/94 mmHg with epi, levo, dopamine, vasopressin

72 hrs post ingestion
 ◦ pH 7.05, trops 27.9, SCr 417 µmol/L
 ◦ ALT 1570 U/L, CK 9883 µmol/L
 ◦ Pt expired
Colchicine

- Plant alkaloid found in autumn crocus
- Available in 0.6, 1.0 mg tabs for gout & Familial Mediterranean Fever (FMF)
- Multi-system poison
 - Inhibits microtubule formation & function
 - Interferes with cellular mitosis & shape
 - Rapidly dividing cells & those with high density of microtubules most affected
Dose

- Therapeutic dose:
 - Gout, acute: 1.2 mg/day
 - FMF: 1.2-2.4 mg/day

- Toxic dose:
 - > 0.5 mg/kg → high fatality rate
 - Lowest reported fatal dose: 7-26 mg
Kinetics

- Rapid oral absorption
- Peak in 0.5-2 hrs
- Widely distributed; highly lipid soluble
- Primarily metabolized via CYP 3A4
 - Lots of drug interactions (Clarithromycin strong inhibitor of 3A4)
- Cycled enterohepatically
- Also excreted renally
- Half-life:
 - 2-30 hrs
 - can remain in tissues up to 10 days
Clinical Effects - 3 phases

- *Gastrointestinal phase: 10-24 hrs*
 - N, V, D, hypovolemia, leukocytosis

- *Multi-organ phase: 1-7 days*
 - Respiratory distress syndrome
 - Dysrhythmias, cardiac failure, death
 - Encephalopathy, convulsions
 - Renal failure, liver failure
 - DIC, bone marrow suppression, pancytopenia
 - Electrolyte imbalance

- *Recovery phase: 7-21 days*
 - Alopecia, resolution of organ derangements, rebound leukocytosis
Treatment

- No specific antidote
- Aggressive GI decontamination
 - Lavage, if early presentation
 - Activated charcoal, even if several hours post ingestion
 - Multi-dose charcoal should be considered
- Symptomatic/supportive
 - IV fluids, electrolytes, vasopressors
 - Antibiotics, blood products
 - G-CSF
Pitfalls in Managing Colchicine

- Lack of familiarity with potential toxicity.
- Failure to initiate early aggressive gastrointestinal decontamination.
- Failure to provide aggressive, supportive care.
Case: Acetaminophen massive ingestion

- Elderly woman brought to ER when found unresponsive in independent care facility. Blister packed meds (none missing):
 - Zopiclone, risperidone, lithium, levothyroxine, felodipine, bisoprolol, aripiprazole

- On admission:
 - pH 7.20, anion gap 24, lactate 6.1 mmol/L
 - AST 8 U/L, INR 1.0, creatinine 62 µmol/L
 - Acetaminophen 2646 µmol/L, lithium 0.5 mmol/L
Case: Acetaminophen massive ingestion

- Next day (day 1)
 - Intubated, ventilated
 - BP dropped
 - pH 6.97, HCO₃⁻ 5 mmol/L, MeHb 11.7%
 - Lactate 12.8 mmol/L, Anion gap 34
 - Acetaminophen 3173 µmol/L
 - AST 44 U/L, INR 1.3

- Current therapies
 - Vasopressors
 - IV N-acetylcysteine
Acetaminophen

- Most common cause of acute liver failure
- 5-15% dose metabolized by CYP2E1 to toxic intermediate (NAPQI)
- Toxicity can occur with acute overdose or chronic supratherapeutic dosing
- Risk increased in
 - chronic alcoholics, malnourished, chronic isoniazid
- N-acetylcysteine: antidote
 - Effective in both early & late presentation
 - Safe, inexpensive
 - Indications:
 - Acetaminophen level > treatment line, if acute
 - Signs, sxs of hepatic injury, regardless of level
Acetaminophen Toxicity—
typical progression

- **Initial**
 - Nonspecific GI symptoms

- **Within 24-30 hours**
 - AST/ALT & INR rises later

- **3-5 days post ingestion, in severe cases**
 - AST, ALT in 10,000’s
 - Coagulopathies, bleeding
 - Coma
 - Hepatorenal syndrome, lactic acidosis

- **Can progress to death from**
 - Hepatic failure, cerebral edema, multi-organ failure
Acetaminophen Toxicity—rare cases of massive overdose

- Early onset of:
 - Lactic acidosis
 - Coma
 - Hypotension
 - Liver enzymes and INR near normal

- “Mitochondrial inhibition”
 - Glutathione depletion produces cascade of events including mitochondrial oxidative stress
 - Inhibition of mitochondrial respiration results in increased production of lactate.

 Note: late onset lactic acidosis after liver toxicity is a different mechanism
Early acidosis

- **Approach to therapy**
 - IV N-acetylcysteine (NAC)
 - Consider hemodialysis
 - Acetaminophen is rapidly removed
 - Reduces body burden, serum levels
 - Corrects acidemia
 - Also removes NAC
 - Double NAC rate
 - Consider additional half-load when dialysis > 6 hours
Methemoglobinemia with acetaminophen overdose

- ? secondary to oxidant effect of massive dose
- ? related to ↑ NADPH glutathione reductase activity
 - *Note:* MeHb commonly seen in cats following acetaminophen administration

- Hemolytic anemia and hemolysis reported in G6PD-deficient patients following acute acetaminophen overdose.
Case: Acetaminophen massive ingestion

- Day 2
 - Pt intubated, ventilated, on vasopressors, IV NAC
 - Not transferred for dialysis
 - Methylene blue not given
 - Acetaminophen 5152 µmol/L
 - pH 7.10, HCO₃ 8 mmol/L, MeHB 10.4%
 - Lactate 14.5 mmol/L, anion gap 36
 - AST 386 U/L, Creatinine 120 µmol/L, INR 2.9
Case: Acetaminophen massive ingestion

- **Day 3**
 - Acetaminophen 4140 µmol/L
 - pH 7.10, HCO₃ 8 mmol/L, MeHB 7.8%
 - Lactate 15 mmol/L, AG 36
 - AST 935 U/L, Creatinine 191 µmol/L, INR 7.4

- **Day 4**
 - pH 7.25, HCO₃ 12 mmol/L, MeHB 4.8%
 - INR >10, lactate 18.9 mmol/L
 - Pt expired late evening
Pitfalls in Managing *Early Lactic Acidosis* from Acetaminophen

- Unfamiliar with this being related to acetaminophen, especially when LFTs are normal.
- Failure to aggressively manage & consider hemodialysis.
- Failure to increase NAC dose during dialysis.
Case: Shatter

- 20-year-old male presented to ER with hallucinations & agitation.
- Friends said he smoked “shatter”.
 - They did as well but they were fine.
“Shatter” refers to concentrated cannabis.

- “Dab” is a dose of cannabis concentrate, usually referring to butane hash oil (BHO)
- Term “dab” has grown to include other forms including shatter, wax, budder
- Solvent extracted with butane or alcohol
 - Home labs have exploded
 - Can purchase from dispensaries
Marijuana

- Dried flower bud
- Female plant
- THC content 5-20%
Hash/Hash oil

- Hashish
 - Pressed resin from trichomes
 - THC: 20-60%

- Hash oil
 - Hashish heated and pressed to produce oil
 - THC: 30-80%
Shatter & Wax

- **Shatter**: clear-like substance, breaks into pieces, smoked in special bong or vape pen
- **BHO (butane hash oil)**: smoked in vape pens or on cig paper
- **Wax (budder, crumble)**: “bowl topping”
- Concentrates can be up to 90% THC
Heated on hot surface & smoked or vaporized
Case: Course

- 6 hrs later
 - Pt tachycardic, agitated, confused, screaming
 - Afebrile on admission, now 37.6 C
 - Labs: normal; Urine + only for THC
 - So far: 60 mg lorazepam & 20 mg loxapine

- 14 hrs: still requiring sedation for agitation

- 24 hrs:
 - Awake, drowsy from sedation
 - Remembers smoking shatter from a bong, his first time; friends are regular users
 - Now anxious & worried
Other Stimulant Hallucinogens

- **Phenethylamines** - includes methamphetamine, MDMA
 - Designer substitutions alter serotonin vs stimulant properties
 - 2 C-substitutes
 - NBOMe
 - Cathinones/mephedrone/others (‘bath salts’)

- **Piperazines**
 - BZP
 - TFMPP

- **Tryptamines**
 - LSD, psilocybin
 - DMT-Ayahuasca
 - AMT (α-methyltryptamine)
 - Foxy methoxy (5-MeO-DIPT)

- **Synthetic cannabinoids** (‘spice’, JWH-018 & others)
“N-Bomb, legal acid”
(images of powder bought in BC)

- N-2-methoxybenzyl analogs of 2C-substituted family of phenethylamines
- Potent 5HT\textsubscript{2A} analog
- Sold as powders or blotters
- Case: 15 y.o. male ingested 25-I-NBOMe and mushrooms
 - Began to vomit, seize, became unresponsive
 - Resuscitation efforts were unsuccessful
 - Died 3 days later of multi-organ failure
NBOMe & 2C substituted phenethylamine exposures in UK

- 2 year period: 341 cases (148 NBOMe; 193 2C)

- Common clinical effects with both
 - Tachycardia
 - Agitation/irritability
 - Hallucinations/ delusions
 - Confusion
 - Hypertension

- NBOMe: higher rates of seizures, hallucinations
- Death: 2.3%; no difference between groups
- Treatment:
 - IV fluids, benzodiazepines, supportive care
Case: Designer Benzodiazepine

- 17 y.o. male brought to ER by police
- VS stable, GCS 14, slurring, drooling
- Took 2-3 tabs of 0.25 mg flubromazolam a few hours earlier (purchased off internet)
- No co-ingestants
- Symptomatic care
- 14 hrs post ingestion, still too drowsy to talk coherently
Designer Benzodiazepines

“For research use only, not for human or veterinary use.”

- Flubromazolam/flubromazepam
 - Unlicensed benzodiazepine
 - Available on internet
 - Pills, powders, blotters
 - Marketed as ultrapotent
 - May have longer half-life
 - Case in literature: (ClinTox 2016;54:66.)
 - Deep coma, ↓ RR, ↓ BP
 - Utox positive for BDZ
 - Woke up with flumazenil
 - Treatment: symptomatic, supportive
Case: Opioids

- 29-year-old female brought to ER by ambulance.
- Found unresponsive, cyanotic, agonal respirations, RR 4/min, sats 60%, pinpoint pupils
- Given 5 mg naloxone; only response was slight twitch.

- **Question to poison centre:**
 - *How much naloxone can be given?*
FENTANYL
CAN BE DEADLY WHEN CUT WITH THE DRUGS YOU'RE TAKING

KNOW YOUR SOURCE? BE DRUG SMART
KNOWYOURSOURCE.CA
Fentanyl

- Increasing % of opioid deaths in Canada have fentanyl detected
- Powder being sold as heroin/cocaine
- Fake oxycodone (“green pills”)
- 50-100 times more potent than morphine
- Negative on opioid Utox
- Urine screen for fentanyl available
Novel synthetic opioids

- Carfentanil
 - 4-carbomethoxy-fentanyl
 - Analog of fentanyl
 - 100 times more potent opioid than fentanyl
 - 10,000 times more potent than morphine or heroin

- U-47700 (“U4”)
 - Non-fentanyl-based synthetic μ-opioid agonist
 - Developed in 1970’s
 - Sold on internet as “research chemical”
 - Found in pills/powders
 - 7-8 times more potent than morphine
W-18

• Developed in 1981 as possible analgesic (W-series compounds)
• Identified along with other synthetic opioids in pills/powders in Canada
• No evidence that W-18 has any agonist activity at opioid receptor
• Reports of toxicity on its own are speculative
Naloxone

- **Indications:**
 - RR < 10/min or
 - sats < 92% on room air, inability to protect airway, or fentanyl-induced chest wall rigidity

- **Dose:**
 - Initial: 0.1 mg IV/IO or 0.4 mg IM/SC/IN
 - Subsequent: every 2 min IV or every 3 min IM
 - 0.4 mg, 0.4 mg, 2.0 mg, 4.0 mg, 10 mg
 - Consider 15 mg as a final dose
 - Repeat dosing or an infusion may be required

- **Monitoring period:**
 - 6 hrs after last naloxone dose, or
 - 12 hrs after naloxone infusion stopped
 - Methadone: Observe 12 hrs after methadone & at least 12 hrs after last naloxone dose or discontinuation of infusion
Case: Opioids

- Naloxone was repeated and when given 15 mg, she sat up in bed & responded.
- Observed for 12 hours longer.
- No further doses required.
- Discharged with RR 18, sats 97%, alert and oriented without verbal or physical stimulation.
- She thought she was using heroin.
Summary- Key Points

- Surprises can be...
 - Unexpected serious toxicity
 - Rapid deterioration of clinical status
 - Unusual treatments that may be helpful

- By anticipating these situations, pharmacists can...
 - Focus recommendations
 - Improve outcomes
Discussion & Questions
Selected References

- **Bupropion:**

- **Intravenous Lipid Emulsion (ILE):**
Selected References

- **Colchicine:**

- **Acetaminophen-massive ingestion:**
Selected References

• **Street Drugs:**